Calpains mediate acute renal cell death: role of autolysis and translocation.

نویسندگان

  • X Liu
  • J J Rainey
  • J F Harriman
  • R G Schnellmann
چکیده

The goals of this study were to determine 1) the expression of calpain isoforms in rabbit renal proximal tubules (RPT); 2) calpain autolysis and translocation, and calpastatin levels during RPT injury; and 3) the effect of a calpain inhibitor (PD-150606) on calpain levels, mitochondrial function, and ion transport during RPT injury. RT-PCR, immunoblot analysis, and FITC-casein zymography demonstrated the presence of only mu- and m-calpains in rabbit RPT. The mitochondrial inhibitor antimycin A decreased RPT mu- and m-calpain and calpastatin levels in conjunction with cell death and increased plasma membrane permeability. No increases in either mu- or m-calpain were observed in the membrane nor were increases observed in autolytic forms of either mu- or m-calpain in antimycin A-exposed RPT. PD-150606 blocked antimycin A-induced cell death, preserved calpain levels in antimycin A-exposed RPT, and promoted the recovery of mitochondrial function and active Na+ transport in RPT after hypoxia and reoxygenation. The present study suggests that calpains mediate RPT injury without undergoing autolysis or translocation, and ultimately they leak from cells subsequent to RPT injury/death. Furthermore, PD-150606 allows functional recovery after injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calpains mediate calcium and chloride influx during the late phase of cell injury.

The role of Ca++ in cell death is controversial. Extracellular Ca++ influx and calpain activation occurred during the late phase of renal proximal tubule cell injury produced by the mitochondrial inhibitor antimycin A. Chelation of intracellular Ca++, extracellular Ca++, the calcium channel blocker nifedipine, calpain inhibitor 1 and the dissimilar calpain inhibitor PD150606 blocked antimycin A...

متن کامل

Single - handed recognition of a sorting traffic motif by the GGA proteins Tom

these differences is the high sequence diversity in the acidic loop of dIII among the calpains. μ-calpain has three more acidic residues in the dIII loop relative to m-calpain; human calpain 3 has no acidic residue in this loop. As the central domain, dIII may play a major role in the Ca2+-mediated activation of calpain6,8. It is conceivable that changes in dIII affect the catalytic and structu...

متن کامل

Bid and calpains cooperate to trigger oxaliplatin-induced apoptosis of cervical carcinoma HeLa cells.

The Bcl-2 homology 3-only protein Bid is an important mediator of death receptor-induced apoptosis. Recent reports and this study suggest that Bid may also mediate genotoxic drug-induced apoptosis of various human cancer cells. Here, we characterized the role of Bid and the mechanism of Bid activation during oxaliplatin-induced apoptosis of HeLa cervical cancer cells. Small hairpin RNA-mediated...

متن کامل

mu-Calpain and calpain-3 are not autolyzed with exhaustive exercise in humans.

mu-Calpain and calpain-3 are Ca2+-dependent proteases found in skeletal muscle. Autolysis of calpains is observed using Western blot analysis as the cleaving of the full-length proteins to shorter products. Biochemical assays suggest that mu-calpain becomes proteolytically active in the presence of 2-200 microM Ca2+. Although calpain-3 is poorly understood, autolysis is thought to result in its...

متن کامل

The role of autolysis in activity of the Ca2+-dependent proteinases (mu-calpain and m-calpain).

A recent hypothesis suggests that proteolytic activity of the micromolar and millimolar Ca2+-requiring forms of the Ca2+-dependent proteinases (mu- and m-calpain, respectively) is regulated in vivo by their association with a phosphatidylinositol-containing site on the plasma membrane followed by autolysis of the proteinases. Phosphatidylinositol association lowers the Ca2+ concentration needed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 281 4  شماره 

صفحات  -

تاریخ انتشار 2001